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pdel pf [Liquid-Propeliar ombustion |

Stephen B. Margolis* o
Sandia National Laboratories, Livermore, California 94551-0969 R

A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant defla-
gration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative
pressure sensitivity. This type of lnstability can coexist with the classical cellular, or Landau (Landau, L. D, “On
the Theory of Slow Combustion,” Acfa Physicochimica URSS, Vol. 19, 1944, pp. 77-85; also Zhurnal Eksperimen-
tal’noi i Teoreticheskoi Fiziki, Yol. 14,1944, p. 240), form of hydrodynamic Instability, with the occurrence of either
dependent on whether the pressure sensitivity Is sufficiently large or sinall In magnitude. For the inviscid problem,
it has been shown that, when the burning rate Is realistically allowed to depend on temperature as well as pressure,
jnf sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating /Q/ .
Torm of hydrodynamic Instability to become dominant. In that reghme, steady, planar burning becomes intrinsi-
cally unstable to pulsating disturbances whose wave numbers are sufficlently small. This analysis is extended Lo Anohf

the fully viscous case, where it Is shown that although viscosity is stabilizing for intermediate and larger wav
number perturbations, the intrinslc pulsating instability for small wave numbers remains. Under these condi- ‘/p}ﬂm/e
tions, liquid-propellant combustion 1s predicted o be characterized by large unsteady cells along the liquid/gas = '
interface. L
Nomenclature ’ - : Introduction
A = burning rate YDRODYNAMIC (Landau') instability in combustion is typ-
- Ap, Ag = pressure-, temperature-sensitivity coefficients jcally associated with the onset of wrinkling of a flame surface,
b; = coefficients in perturbation solution, where i which corresponds to the formation of steady cellular structures as
. isequalto 1,2,...,10 . the stability threshold is crossed. This type of instability was orig-
e = rale-of-strain tensor ] inally described by Landau! and is attributed to thermal expansion
Fr = Froude number ’ - across a combustion front. Although gaseous combustion was de-
g = inverse Froude number (gravitational acceleration) ' termined Lo be intrinsically unstable in Landau’s analysis, it was
k = perturbation wave number . .. demonstrated that additional effects, such as gravity and surface
fig = unit normal lension, that enter when the unburned mixture is a liquid resultin a
P,Pr = Prandil number specific stability criterion. However, this analysis, along with alater
r = pressure . . study by Levich? that considered viscous effects in lieu of surface
q = quantity defined following Eg. (26) L tension, assumed that the the combustion front propagated normal to
r = quantity defined following Eq. (26) o itself with constant speed, whereas it is now recognized that there is
t = time variable o ' . a dynamic interaction between the burning rate and local conditions
u = perturbation velocity vector . at the front.
v = velocity vector . ~ For Lhose problems in which pyrolysis, exolhenmic decomposi-
(x,y,z) = moving coordinate system - tion and/or combustion occurs in an intrusive region in the vicinity
Y = surface-tension coefficient . of the liquid/gas interface, the dynamical coupling of the burning
€ = small bookkeeping parameter  .: . rate with the underlying hydrodynamics of the flow can be achieved
4 = perturbation pressure B through an analysis of the thin combustion/interface region. An al-
A = gas-to-liquid thermal diffusivity ratio ternative approach, however, is to simply postulate a. phenomeno-
i3 = gas-to-liquid viscosity ratio . logical dependence of the local burning rate on pressure and tem-
p = gas-to-liquid density ratio ) ’ perature and to obtain results in terms of suitably defined sensitiv- .
o, = location of gas/liquid interface . ) ity parameters. Both types of methodologies have been applied to
[ = perturbation in location of gas/liquid interface the problem of solid-propellant combustion, and each offers certain
w " = complex perturbation frequency . . advantages.>* In the present scries of studies on liquid-propellant
combustion,5~7 the latter approach has been adopted, thereby gen-
. Subscripts and Superscripts : eralizing the Landau'/Levich? model to allow for a coupling of the
. - i L . . burning rate with the local pressure and temperature fields. T R
‘k" = inner wave number regime or Integet variable M st Summarizing pf some of the results obtained from the eZ—'
h«lfk'\ f = far outer wav umber regime present model, it has been shown thal when only the pressure sen- i
I = liquid o sitivity of the burning rate is taken into account, an appropriately s
} b4 = gas . L generalized stability criterion for cellular (Landau') instability is ob- - -
h PL{!\“ €o = =oula wava‘umber regime . tained. Exploiting the realistic limit of small gas-lo-liquid density :,
] * = scaled quantity . ’ ratios, it is found that the stable region occurs for negative valuesof ;.

the pressure-sensitivity parameter, with the original Landau model " % i
being intrinsically unstable in this limit. In'particular, the neutral
stability boundary possesscs a local minimum when plotted against
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publicacion uae the disturbance wave number, which suggests that as the pressure-
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hat surface tension and viscos-
ity are stabilizing influences for shidrt-wave disturbances, whereas
gravity is a stabilizing influence for long-wave perturbations. As a
result, the effect of reducing the gravitational acceleration to mi-
crogravity levels is to shift the neutral stability minimum to smaller
wave numbers. Thus, in the microgravity regime, Landau instability
becomes a long-wave instability phenomenon, implying the appear-
ance of large cells along the combustion interface. :

Aside from the classical cellular form of hydrodynamic instabil-
ity, this dynamic generalization of the Landau!/Levich? model also
predicts the appearance of a pulsating form of hydrodynamic in-
stability, corresponding to the onset of temporal oscillations in the
Tocation of the liquid/gas interface. This form of hydrodynamic in-
stability occurs for negative values of the pressure-sensitivity param-
eler that are sufficiently large in magnitude.® Consequently, stable,
planar burning is predicted to occur in arange of negative pressure
sensitivities that lies below the cellular boundary and above the pul-
sating boundary just described. A stable range of negative pressure
sensitivities is applicable, for example, to certain types of hydroxy-
lammonium nitrate- (HAN-) based liquid propellants for which non-
steady modes of combustion have been observed.®? (Though less
common, ranges of negative overall reaction orders/pressure sensi-
tvities have been reported for sufficiently diluted gaseous hydrocar-
bon fuels as well'). The appearance of both pulsating and cellular
forms of hydrodynamic instability is analogous to the two corre-
sponding types of thermal/diffusive instabilities that occur for suf-
ficiently large and sufficiently small Lewis numbers, respectively.!!

When the effect of a temperature sensitivity in the burning rale
is included in the analysis, substantial modifications lo the preced-
ing stability description can occur. Specifically, if the temperature-
sensitivity parameter is sufficiently large relative to the parameter
corresponding to pressure sensitivity, the pulsating hydrodynamic
tuming point, that is, become
C shaped, in the (disturbance-wav umber, pressure-sensitivity)
plane. In that case, the stable region”for small wave numbers dis-
appears, and liquid-propellant combustion is predicted to be intrin-
sically unstable to the nonsteady form of hydrodynamic instability
for all sufficiently large disturbance wavelenfths. This has been de-
scribed in detail in the limit of zero viscosity, and the purpose of the
present work is 10 extend that analysis to the fully viscous model.
Viscous effects were shown to have a substantial influence in the
absence of thermal sensitivity, where it turned out that the stable
region became significantly widened when viscosity was present,
and the same result will be demonstrated when thermal effects are
present. However, the same intrinsic pulsating instability that occurs
for sufficiently large temperature sensitivities and sufficiently small
wave numbers in the inviscid case will be shown to be preserved
even when viscosity is included. These results lend further support

to the notion that a likely form of hydrodynamic instability in liquid-.

propellant combustion is of a nonsteady, long-wave nature, distinct
from the steady, cetlular form originally predicted by Landau.!
The physical nature of the pulsating form of hydrodynamic in-
stability described here, like the pulsating form of thermal/diffusive
(or reactive/diffusive) instability} is manifested through an oscil-

Jatory imbalance between reaction-front perturbations and those’

processes that act to dampen such perturbations. In the case of a
pulsating reactive/diffusive instability, such as occurs in gaseous
combustion,!! smaller mass-to-thermal diffusivity ratios, that is,

‘larger Lewis numbers, allow a relatively greater concentration of
. reactant in the reaction zone. This in turn triggers,

for sufficiently
large Zel'dovich numbers, a more intense reaction, which leads to
an imbalance between temperature perturbations that accelerate the
front and cause the profiles to steepen, and diffusion, which trans-
fers heat to the unburned mixture and thereby reduces the reaction

" intensity. In the purely hydrodynamic problem, a negative pressure

sensitivity plays a somewhat analogous role to that of diffusion be-

__cause positive pressure perturbations will either locally accelerate

or decelerate the front, depending on whether the pressure sensi-
tivity is positive or negative. Thus, positive pressure sensitivities
lead to intrinsic instability,® whereas negalive pressure sensitivities

that are sufficiently large in magnitude lead to an overcorrection
in the local burning rate in response 10 a hydrodynamic pressure

disturbance. In the latter case, an oscillatory imbalance between hy-
drodynamic perturbations and corresponding variations in the local
burning rate is/thus established. As indicated by the subsequent
results, the inclusiorf of viscosity and a thermal sensitivity in the re-
action rate, where the latter results in a coupling of the thermal and
hydrodynamic ficlds, accentuates this effect through the inclusion
of thermal/diffusive processes as already described.

Summary of the Mathematical Model

The mathematical model was described previously,>!? but is
briefly summarized here for completeness. Specifically, it Is as-
sumed that the combustion front coincides with the liquid/gas inter-
face, where pyrolysis and/or exothermic decomposition occurs. De-
noting the nondimensional location of this downward-propagating
intesface by x3 = ®(x), %3, f), where x3 is the vertical coordinate and
the adopted coordinate system is fixed with respect to the stationary
liquid at x3 = —00, we wransform to the moving coordinate system
x=xi, y=%2, and z=x3 — &(x;, x2, 1) such that the liquid/gas
interface always lics at z = 0. Conscrvation of mass, energy, and
momentun within each phase then gives '

V.yr=0, 1999 ¢)]

%-%‘:%?’r -v@_[i]vze, 250 @

3’;—%—(:—)%E-{-(V.V)v:(o,o,-—Fr")—[,')l_l]Vp o
+ { NG }V’v, 250 @

where © is lemperature, Pr; and Pry are the liquid- and gas-
phase Prandil numbers, A and ¢ (to be used) are thermal diffusivity
and heat-capacity ratios,
(gravitational acceleration). Other nondimensional parameters in-

troduced subsequently include the gas-to-liquid viscosity ratio p

(pAPr, = uPry) and the unburned-to-burned temperature ratio o,.
Equations (1-3) are subject to a set of boundary and interface
conditions given by )
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where vy = v} a0, €2 = €m0, and Egs. (5-10) correspond tocon- -
tinuity of the transverse velocity components (no-slip), conservation _

of (normal) mass flux, the mass burning rate. (pyrolysis) law,

and Fr! is the inverse Froude number -
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conservation of flux of the normal and transverse components
of momentum, and conservation of heat flux. Here, S(®)=
I+ + <b§)"”2. the unit normal A, = (—®z, —®y, I5(P), and
the expressions for the gradient operator, the Laplacian, and the
curvature in the moving coordinate system are piven by V=
(0 — B8, 8y — Dy3;, 32), V= 3y + Byy + (1 + 92+ 913 —
24,3, — 28,8y, = (Psx + Pyy) e and =V - ii; = P (1 + d>§) +
@,, (14 2) — 20, &, sy, respectively. However, the vector v still
denotes the velocity with respect to the (x1, X2, X3) coordinate sys-
tem. Finally, we note that the nondimensional mass buming rate
appearing in Eq. (7) is assumed to be functionally dependent on
both the focal pressure and temperature at the liquid/gas interface.
By definition, A = 1 for the case of steady, planar burning, but per-
turbations in pressure and/or temperature result in corresponding
perturbations in the local mass bumning rate.

" Because the thermal and hydrodynamic fields are coupled only
through the temperature dependence of the mass burning rate A ap-
pearing in Eq. (7), the strictly hydrodynamic problem for p, v, and
&, can be ana]zzed separately when A is assumed to depend on
pressure only.*® In the present work, we focus on the fully coupled
problem to determine how the hydrodynamic stability boundaries

are modified when the local burning rate depends on temperature as
y/ well as pressure. Our stability results will /ﬂ\us/dcpend on two sensi-
tivity parameters, A, and Ae, definedas A, =9A/3plex1,p=0 and
Ag=08A/30|gm1.p=0 Where @=1, and p=0 are the interface
values of temperature and pressure of the basic solution in Eq. (11).
Though an explicit expression for the reaction rate A is not needed
in the present analysis, we note that, because the nondimensional
activation energy is typically large, the temperalure sensitivity Ae
would likely be larger in magnitude than the pressure sensitivity
A, which will have some bearing on the relative scalings of these
parameters that will emerge in the following analysis.

Basic Solution and Its Linear Stability

The nontrivial basic solution of the preceding problem that corre-
sponds to the special case of a steady, planar deflagration is given by

0 = —1, 0 = (0,0,v")
0 z<0 et z2<0
a_ 1 0y = 1€ .
v [p" -1, z>0, e’ {1. z>0
~1 -1
oy JTFate -1, z<0
P {—pFr“z. >0 (D

The problem governing its linear stability may be formulated, be-
fore introducing any further approximations, in a standard fashion
by introducing the perturbation quantities ¢ (x, y, D=d(x, y, 2,0
2%, aG oy, 0 =vx ) = 0@, fky b=
plx,y,z.8)—p°@@), and 8(x,y,2,)= 0 - 0%z) — ¢, d0%dz.
The problem obtained when Eqs. (1-10) are linearized about the
basic solution (11) is then given in terms of these perturbation vari-
ables by
u, du; du;
ax * dy az

ou ou_ (5 (1] .5
\' 9'{ }8t+ - (8x+[p]Fr ax'

p

=0, z#0 (12)

N (128 20) [ P | (B P B0
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Bl=o+ — Blrmo- =¢; (15)
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Uilgmo- — Hilemor = (07 = Débx
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whete Eqgs. (16) and (17) have been used to simplify Eqgs. (18-21).

Nontrivial harmonic solutions for ¢, u, and {, propor-
tional to exp(iw! +ikx + ikzy), that satisfy Egs. (12-14) and
the boundary/boundedness conditions at z=:k0o are given by
¢ =expliot +ikix +iky) and AR T

JUTIPRRREE S

= .(' ¢ + ikix +ikay) biet* — Fr!, 2<0
¢ =explar +ikx T YNy mte . pFr-t, z>0 (22)
u; = expiot + ikx +iky) o
bye¥® — iky(iw+ k)" bred, 2<0 :
X bee't — ik (iwp __k)—lbze-lz' - z>0 i 23)
uy = expliot + ikix +ik2y) ]
bse®® — iky(iw + k) oyet, 0 2 <0 A
X boeu —- ikz(iwp - k)-ibze-h‘ N 'Z> 0 M (24) N
u3 = expliot + ikyx + ikz)’) .
bret® — k(iw + k)" b€k, z<0
X ’
byt + kiwp — k) oze™, >0 @3)
9= exp(iot +Vik,x +ikay) 7 A ) ‘ . :
- [byer — liw+ K —q(g + 1)1"bzg‘ﬁf"' o
x| k(G- R bet s, 2 <0
bloenu -l i > 0 (26)

W
where k= (k} +k2)'/* is the overall disturbance” wave ‘numb
and the quantities p. q, r. and s are defined as 2p=1+(1+
Aiw+KkD))V2, 2Prig=1 +[1+4Pri{io+Pri k)12, 2uPrir
1 — [1 + 4pPriiop + pPrk))?, and V2pAs =1~ [1 +
40%A(iw + Ak?)]'2. Substituting this solution into the interface con-

ditions (16-21) and using Eq. (12) for z = 0 yield 11 conditions for-
‘the 10.coefficients b—bo and the complex frequency (dispersion

relation) iw(k). In particular, these conditions are given by--
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ik; ik, ,
by — - =(p ! -
3 iw+kbl by + Top _kbz (p ik,
ik ik, O e
bs — - = -
5 iw+kb’ bs+ Top _kbz » Dik; (28)
k pk )
- b, - pby — =(1—p)i
] orEl TP lwp—kbz { P)l‘f)
k . -
b = o~ Arlr — Aebu=ie - pFr A, 29)
2k*Pr, 2k(kpPri 41— p)
DOTRCLILALIY PR PP i sl LSS P
[ + o +k]b| [ + ‘,wp % bz 2Pl’(qb7
—2(1 = p — pPrirby = (1 — p)(Fr' = 2w) +yk*  (30)
2ikkuPr; . 2ikikPry
Prirbe + =——'b, + ik - 2ann
pPrirby + Twp — K by + iky\uPriby — Prigbs + ok by
—ikPriby; =0 31
2ikokpPr, i 2ikkPry
uPrirbg +_—ﬁ-’£lez + ikauPribg — Prigbs + ‘_w2+ k‘ by
 —ikPrb =0 ¢2)
big — by + [iw+ & = g(g + D] 'by — k() = KT "oy =1 -
' (33)
g+1
1- As)bio — —_—— 1
(1 —c+cprsibio pb9+[‘.w+k,_q(q+l)+ ]b1
k k41 . "
- —m[m+l]b1—l+lw (34)

Although the preceding problem is linear in the coefficients
by~bo, which can/thus/be eliminated to give a single equa-
tion for iw, the resulting dispersion rclation is quite long and
highly nonlinear. Explicit results may be obtained for certain spe-
cial cases, including the original problems considered by Landau!
(A, =Ag=Pr;=p=0) and Levich? (A, =Ae=p=y=0), as
well as a particular case (Ae =pu=Pr;=0) of the generalized
model described earlier>3 To obtain more general results, it is
possible to exploit the smallness of certain parameters and to seek
asymptotic solutions for the neutral stability boundaries. In partic-
ular, realistic limits to exploit include the smallness of the gas-to-

liquid density and viscosity ratios o and 4, and, in the microgravity
regime, Fr~'. Pursuing this approach, tractable asymptotic results -

have so far been obtained for Ag =0 (Refs. 5 and 6) and for the
inviscid problem when Ag is nonzero (Ref. 7). The present work
essentially completes the asymptotic analysis of the dispersion rela-
tion embodied in Eqs. (27-34) By extending the last of these studies
1o the fully viscous case. ’

Parameter Scalings and Asymptotic Analysis
of the Dispersion Relation
Focusing on the realistic regime p K 1 (typical values are on the
order of 10-3 or 10~4), we formally introduce a bookkeeping param-
eter € < | and introduce the reasonable scalings p = p*¢, p = ue,
Pr;~O(1), and cither Fr~' =g or g*¢, where Fr~' ~O(e) cor-

-responds to the case of greatly reduced gravity. In this parameler

regime, the appropriate scaling for A, to describe the neutral stabil-
ity regionis A, = Aje (Refs. 5 and 6), whereas the appropriate scale
{hat describes the main effects of thermal coupling tums out to be
Ao = Abe' (Ref. 7). Based on this scaling, we note that the ratio
Ae/Ap~O(e¥*)>> 1, as might be expected based on an overall
Arrhenius reaction-rate dependence on temperature. o,
Based on our earlier analyses, the scalings introduced induce a set
of corresponding regimes for the wave number k (and the complex
frequency iw) in the dispersion relation determined by Egs. (27—
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34). These first emerged in our analysis of cellular instability using
the generalized model in the limit Ag =0, but they are also relevant
when one considers the pulsating form of instability and when Ae is
allowed to be nonzero. In particular, in the case of cellular instability
and zero temperature sensitivity, there are three wav@humber scales h‘”
to be considered. First, there is an O(1) oulcr,_wav@umber region, Z
where the stabilizing effects of surface tension, viscosity, and gravity ‘
are all relatively weak. Second, there is a far outer scale & ~ksfe,
where surface tension and/or viscosily are strongly stabilizing and
gravitational effects are, to a first approximalion, negligible. Finally,
we have an inner scale k ~ k;€ or k;€2, where gravity is the dominant
stabilizing effect (the first scale is valid for normal gravity, the latter
for the reduced gravity regime) and where viscosity and surface-
tension effects are absent at leading order. In each of these regimes,
the cellular stability boundary, obtained by sceking solutions of
the dispersion relation for which iw is identically zero, is given,
respectively, by

L]

AL (k) ~ "Ei'

Fr' ~0()
Frt~0() (35)

o (08 — ) [ 2%,
o' (o8 = ki) [ 2k,
2p'p'P[l +ke(p'y +2u"P + Zp‘P)] P
apsP(1+ p* Pks) = (1= R)(p*y +20° P)L’)

A% ~ [

A;(!) ~ _po

CR=(1+ 4;0’1)%})*_ (36)
where P = Pr;. Matching these solutions 10 one another then leads
to the compasite stability boundary

o) o, _ 4t
ALE P _
+ 200wt P[1 +ek(py +2u* P+ 2p*P)] =7
AP+ ekprP) = oty +2u D)1= (1 +aprprant] oo

p*l [es
* 2k [e’ g
as shown in Fig. 1. Clearly, the stable region lies below Aj = — p/2
(negative values of A, over cerlain pressure rang are characteristic ) ¢
of a number of HAN-based liquid propcllant.y?, with the location A
of the minimum in the cellular boundary increasing to less negalive
values of A, with increasing values of the stabilizing parameters

| Pri, u*, and g (or g*). In Fig. IL\. he curves are drawn for
case € =0.04, p* =1.0,8 =60,¢"=2.0. The solid curves corre-
spond to the inviscid L it (P =0) with nonzero surface tension
(y =2.5). The dash-dot curves correspond to nonzero surface ten-
sion (y =2.5) and liquid viscosity (P = 1.0), but zero gas-phase vis-
cosity (u* P =0). The dash—dot—dot curves differ from the dash-dot
curves by the addition of gas-phase viscosity (u* P =1.0) and are
similar to the dash-dot—dot—dot curves, where the latter correspond
to larger viscosities (P = u*P =2.0). The dash—dot—dot—dot—dot
curves correspond 1o a viscous case (P = u* P = 1.0), but with zero
surface tension, ; arié he two sets of curves cor-
responding to it normal and reduced gravity cases, it is clear that
the critical wave number for instability becomcs small in the latter
regime. That is, cellular hydrodynamic instability becomes-a long-
wave instability in the limit of small gravitational acceleration. Fur-
ther discussion of this stability boundary, and its relationship to the
original Landau'/Levich? predictions, is given in Ref. 5. '

Considering the pulsating stability boundary (in the limit
Ag =0), which is obtained by seeking solutions of the dispersion
relation for which only the real part of iw vanishes, it is found® that |
the corresponding expressions in the inner and outer Wave aumber
regions are given by ’ RN

37

A~opt, A ~—prE2PRE 08
Ao e oS TR

respectively. In this case, it is clear that the outer solution is, in fact,
the composite solution, which lies below the cellular boundaries and

@:pw andd fouren JeH © CurVq
Ny naapend Fe He sr0ramd apd ip




>l

2l

Ed)

" consider the O(1) wav

I p1: FVZ/LOE
I AIAAJ4CO9

PLFVZ

18:6 20 July 2000 J24866(T)/Margolis

HYDRODYNAMIC STABILITY BOUNDARIES (p << 1)

Viscous Case (P > 0)
a | (e'Fr0) unstable k (co'n-1.0)
o T T T ] T T O L] T 1
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Fig.1 Asymptoticrepresentation of the cellular hydrodynamic neutral
stability boundarles.

recedes to negative values of A, that are larger in magpitude than
O(e) as k becomes large (Fig. 2). Clearly, this stability boundary
is more sensitive to the stabilizing effects of the liquid viscosity
parameter P than is the cellular boundary, having a leading-order
stabilizing effect for O(1) wav@;mber disturbances in this case. In
the limit P — 0, the pulsating boundary collapses to the straight line
A, =—p*, thatis, Aj, =—1inFigs. 1 and 2, but even in that limit,
there is a region of stability corresponding to values of A} greater
than —p* and less than the minimum in the cellular boundary, which
is greater than —p* /2. However, if one now considers the effects of
a nonzero temperalure sensitivity in the inviscid limit P = 0, then,
for Ag ~ @(¢!/4), the pulsating boundary possesses a tuming point

such that the stability region disappears for sufficiently small wav@

number perturbations.” This is shown in Fig. 3, which indicates that
the pulsating boundary then frames the stable region except along
the upper branch that asymptotes to the previous cellular boundary
as k becomes large in the outer waw&umber region. The evolution
from a stability diagram that indicates a stable region delineated by
distinct pulsating and cellular hydrodynamic stability boundaries
to the pulsating-dominated one shown in Fig. 3 can be shown lo
occur in the parameter re§ime Ag ~ O (e"?), which, based on the
estimate Ag/A, ~Oe~'? 2 30 (i.e., of the same order as a typi-
cal nondimensional activation energy), appears to be attainable for
many types of liquid propellants. We now extend the analysis that
produced the fully developed pulsating boundary shown in Fig. 3 to
the viscous case in which both P and u* are allowed to be nonzero.

Owing to the complexity of the fully viscous problem, we analyze
Eqs. (27-34) directly by seeking appropriate expansions for the
complex frequency iw and the coefficients ;. This differs from our

*: approach in the inviscid limit where it was feasible to first eliminate
“’the & to obtain a single jmplicit equation for iw alone. We first -
ber region and, based on our earlier -’
analyses, seek an expansion for the dispersion relation iw(k) in this
" region in the form -~ . - B R

iw~é‘l(iam+e*iwl+;iian-;-~--) (39)

" where the form of the latter expansions is again partly motiv
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Fig.2 Asymptotic representation of the pulsating hydredypamic sta- ’/ _

bility boundary for the viscous case (P > 0).A A€ ce/) u/a—u 60 el
AL g souere ar AR
Introducing the already defined parameter scalings, the quantities ”UE",'. / n
p, g, r, ind 5 defined following Eq. (26) are expanded as ‘4
- e LT Sy
P~ P € i_+P0+P(§)‘*+"‘ i
q~q(_})('*+qo+...‘ . i B

r~r(i)e§ +rie+r,e+---,

. SN_.;Q)(A).F... (40)

where . K '
 Pep= oot 2po = [1 +iw [ Giw)]
8p = (o) d[1 4 4k? + dien — Gn)? [iwo)

G-y = Gwo/ P)Y,

, g
2Pgo = [1 +iwn/ Giwn/ P)H] |
Ty = Sepy = —ieor’, !

T = —iwp*

"

rno=—iwp® = (WP "t
FEE. LT
Finally, the b; are conservatively postulated to have the expansions’

* I HER .'
( . l=l,2,8 IS

by = b Ve! o et + Vet

R

by =6 Vet o0+ ,,‘d)gu.'..',' 4=7.9100@1

our earlier analyses of more specialized cases. /1" %
Substituling the preceding expansions into” Eqgs. (27-34) and
equating coefficients of like powers of ¢, we obtain the. leading-

order conditions " : : 4’ LA ;ﬁ}_' Cade TR
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i 4 i 4 q(_},)zi'*’
= ik il +"r(i,b§'” =0 “2)
b = -k /0%, b7V = —(wo)* [k
A St L @3)
B 460 — 267" =0, b = —k/o")(1+ A3/ 0%)
' @4

where the Iast of these was obtained from the leading-order differ-
ence of the first and second of Egs. (29) using the last of Egs. (43).
From Eqs. (43) and (44) wc{ﬂ‘ms,lconcludc that the leading-order
dispersion relation is given by -

(w0 = (k/p*) (245 + )

which is the same result as that obtained in the inviscid casc
when Ag=0.In particular, Eq. (45) implies that (iwg)2 S0 for
AlS—p*/2, which recovers the leading-order cellular boundary
(35) for O(1) wavenumbers, but gives no definitive information re-
garding stability for A} < —p* /2 because iwp is purely imaginary
in that region. That is, the stability of the basic solution in the latter
region is determined by the real parts of higher-order coefficients in
the expansion (39) for iw, although Im{iwo} #0 implies that distur-
bances have a pulsating character for values of Aj, below the cellular
stability boundary.

At the next order in the analysis
second set of conditions given by

@3

of Egs. (27-34), we obtain a

b H 4 ikgbt Y g o 4_—qob§'*’ =0 (46)
bV 4 kot b Y g b =0 “n
iy = b P = P pP = B = B

= =0 =P =0 48

where the last of Egs. (48) was deduced from the next-order dif-
ference of Eqs. (29). Finally, from the sum of the first of Eqgs. (28)
multiplied by ik, and the second of Eqgs. (28) multiplied by i ky, we

1,
conclude that b;' VD = g1 — As/p*). However,
plies the need to continue the analysis at the next orde to determine
iws. Proceeding in this fashion, we obtain from the carlier results and
Eqs. (29-34) atthis next higherorder anew setof conditions givenby

PR

o *iwpp P ~tiw, =k(1-4; /p;),r Cob =0
S e T )
s 2 (kP 1+ 43/ 6%) (50) -
WY = (ay /e =ianlt - (A/6)] 6D
— kit Y - Gonibl —2iw, =2P2, b < P
. Co 52)

where Eq. (51) was actually obtained from the next higher-order dif-
ference of Eqgs. (29) and the second of Eqgs. (49) was obtained from

the sum of Eqy. (31) multiplied by ik, and Egf. (32) mu/lgpli(c%!gy

" ik,. Equations (49-52) constitute a closed system for bg" Wby

" relation for iw; as

In the limit k — oo, it is clear that lbaﬁrc two solutions of Eq. (54) ’

/¥, and iewy. Eliminating the first three of these in favor of the last
and using the result (45) for iwg, we finally obtain the dispersion

iwy = —2PK? + k(4; [ = 1)

x[A;,/p‘+l+p"ik'1A‘9(2A;/p‘+{) *] " (53) 8
Stability in the region A}, < —p*/2 below the cellular boundary

is determined by the real part of iw;. In that region, the principal Ml"
value of the complex factor in Eq. (53) may be written asg(A}/ 5“,4-
pt 1)y =[- (A /0" + [)]-34e~¥"/4, and thus the neu ') .
stability condition Relie;}=0 leads to an'implicit equation - r,""‘ i
for the (pulsating) neutral stability boundary 'A;,(lg; A4, P). In :'a i
terms of the new pressurc sensitivily parameter b defined by '
Apy=— (p*/2)(1 + b), where b represents the negative deviation, in f”

1]
units of p* /2 from the cellular boundary A}, = —p* /2, this boundary A 2 f
is given by - 1 L v

e +B)7HE + B)(1 —b) + 8PAY = ai'/k;;'! ‘

iq;;h- et

givenby b=0, hatis, A} = —p*/2, and b~ -} +2(1+ 2P\,

=

e

i =0ia- 7
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that is, A}/p* ~~=(1 +2Pk)"?, Thus, the pulsating boundary is
clearly multivalued, as in the inviscid case (Fig. 3), with one branch
approaching the cellular boundary and the other branch approaching
the pulsating boundary for Ag =0 (Fig. 2) in the limit of large .
More generally, Eq. (34) may be rewritten as a cubic equation for

the inverse relation k(b) as
64P23 + 1603 +b)(1 - BYPKE + (3 + D)2 (1 - bY’k

—ata+bpbi=0 (55)
which is clearly seen to collapse to the previous inviscid result’ in
the limit P —» O. For arbitrary P, typical plots of k(b) are shown

" in Figs. 4a-4d, which, when rotated ~90 deg so that the k axis is

= horizontal, is readily interpreted in the context of Figs. 1-3, where

P A~ thelines AL =—p*/2 and,—p* correspond to b=0 and,1, respec-

b tively. It is clear that thescurves asymptote to the lines’s =0 and

A—-l 4 2(1 4 2Pk)/? as k =» 00, where the latter corresponds to the

% “viscous pulsating boundary in the limit A} — 0. They cross the

o -,

# limit, at & = «¥/2/4 P2, That the pulsating boundary

becomes C shaped (in the rotated frame of reference) for Ag >0
implies that steady, planar burming is intrinsically unstable for suffi-
ciently small wave numbers. In addition, because the portion within

N line b= I, which corres?onds to the inviscid pulsating boundary in -~
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the C-shaped curve is the stable region, any crossing of the C-shaped
boundary from the stable 10 the unstable region corresponds to the
onset of a pulsating instability. As Ag increases, the tumning point of
the C-shaped pulsating boundary shifts to larger values of k. On the
other hand, as A3 becomes small, the tuming point shifts to small
values of k such that this point eventually leaves the O(l) wav
number region for which Eq. (54) is valid. Indeed, it turns out that
the transition to separated pulsating and cetlular branches occurs as
Ae decreases through O(e'/?) values for intermediate O(e'*) wave
numbers.” Thus, as A} becomes small, the original pulsating and
cellular boundaries are recovered in the O(1) wave number regime,
but as A} becomes large, the original cellular boundary lies within
the unstable region for O(1) wave numbers, and the basic solution
becomes intrinsically unstable to oscillatory disturbances.

Composite Neutral Stability Boundary

A composite asymplotic solution for the neutral stability bound-
ary in the regime Ag ~ O(¢'/*) is thus obtained by matching the cel-
lular and pulsating boundaries in the far outer wave number regime,
where the former is given by Eq. (36) and the latter by the second
of Eqgs, (38), with the appropriate solution branch of Eq. (54} in the
o wa ber region. In particular, reverting back to the pa-
ramér A*, we denote the two solution branches of Eq. (54), which

concsponcpl to the portions of Fig. 4 that lie to the left and to the

k ~ O(EHY k ~ ot =01
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Fig.4 Pulsating hydrodynamic stability boundaries for k ~ O(f) and Ao ~ O(e!/4) in the general viscous case for p*
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(A (rotate Fig. 4 by —90 deg) portions of the double-valued pulsating

}Q ﬂ,}d right of the turning-point minimum, by A3 (k) and AL (k),

boundary A* (k). Along the upper branch, A;“’"” — —p*/2, that

# isp—0, as'k — oo, which can be matched with Eq. (36) because
A AY = —p*/2 as ky — 0. Similarly, ALeD o —p*(1 +2PK)\
fie., b— —142(1+2Pk)"*] as k — oo, which clearly matches
the viscous pulsating boundary given by the second of Egs. (38)
in the far outer wave number region. As a result, a leading-order
composite stability boundary spanning both the outer and far outer

wav@umber regions is given by
o

Y®
st

>1

stable

Ay =-p"VI+2Pk

Fig.5 Composite pulsating/cellular hydrodynamic stability boundary for Ag ~ O(e}/%) in the general vlscou; case."_ i

o

with the combustion front, realistically possesses both a pressure and
temperature sensitivity. In the present work, the fully viscous case
was considered, thereby generalizing previous analyses in which
either the viscosity of the fluid and/or the temperature sensitivity
of the reaction rale was neglected. As in these preceding studies,
the smallness of the gas-lo-liquid density ratio was used to define
a small parameter that allowed an asymptotic treatment of a rather
complex dispersion relation. Specifically, it was again shown that
in addition to the classical Landau, or cellular, stability boundary,
there exists a pulsating hydrodynamic stability boundary as well. For
sufficiently small values of the temperature-sensitivity parameter,
there is a stable region between these two boundaries corresponding

* 20°u* Pl + ek(p*y +2u* P +20°P)]

A;("") (k) —_ % +

!.V Al (k) ~
Ve \’r"&v" L) o
ES

d
S)““I ok
b for A
Eq. (
s

»°» where Ajf is/the turning point calculated from
and the second tergh in the top expression has been ex-
pressed in terms of the out aﬁumbcr variable &.

The composite stability boundary 1s shown in Fig. 5.Basedonthe
preceding construction, the lower branch of Eq. (56) is a pulsaling
boundary for all wave numbers, whereas the upper branch transitions
from a pulsating boundary for O(l) wave numbers (o a cellular
boundary for O{e™!) wave numbers. Indeed, from Eq. (45), the size
of the upper region of oscillatory instability, which is bounded below
by the upper branch of the pulsating stability boundary and above
by the region of nonoscillatory instability beyond the outer cellular
boundary A} ~—p*/2 for AL =0, shrinks to zero as k becomes
large on the O(1) wavgumber scale. In this regime, the lack of a
stable region for sufficiently small wave numbersAhus Amplies an
}/ﬂ/ intrinsic instability to long-wave pulsating perturbations.

>\

Conclusion

" The present work further extends our recent formal treatment
of hydrodynamic instability in liquid-propellant combustion. The '

analysis is based on a generalized Landaw/Levich model in which
the dynamic motion of the liquid/gas interface, assumed to coincide

_-ity. Consequently, for sufficiently large values, pfilhc temperature-
" sensitivity parameter, the pulsating boundarydevelops ‘a turning

s P(L+ p* Pek) — (1 — [1 + 42 PR ) oty +20u%P) (56)

to a range of negative pressure sensitivities for which steady, planar
burning is stable. :

As the pressure sensitivity decreases in magnitude, the cellular
stability threshold is crossed, leading to classical Landau instabil-
ity. Surface tension, viscosity (both liquid and gas), and gravity
are all stabilizing effects with respect to this type of instability.
However, only gravily stabilizes small wavgumber disturbances,
and thus Landau instability becomes a Jong-wave instability in the
reduced-gravity limit. Alternatively, as the pressure-sensitivity pa-
rameter increases in magnitude, the pulsating boundary is crossed,
and liquid-propellant combustion becomes unstable to oscillatory
perturbations. This type of hydrodynamic instability is more sensi-
tive to the stabilizing effects of (liquid) viscosity than is the cellular

boundary, but the stabilizing influence of viscosity does not ex-~

tend to small wav@umber disturbances, and gravity turns out not :;
to have a significant effect on this type of hydrodynamic instabil-

point and becomes C shaped. In this parameter regime, correspond-

ing Lo ratios of the temperature-to-pressure sensitivities of the order

of 2001000, steady, planar combustion is intrinsically unstable lo

nonsteady long-wave perturbations. In that case, the pulsating form ~

-

A
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of hydrodynamic instability is predicted to dominate, leading to
large unsteady cells along the burning liquid/gas interface.
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